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Statistical mechanics of macromolecular networks without 
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Abstract. We report on a novel approach to the Dam-Edwards model for interacting 
polymeric network without using replicas. Our approach utilizes the fact that a network 
modelled from a single non-interacting Gaussian chain of macroscopic size can be solved exactly, 
even for randomly distributed crosslinking junctions.' We derive an exocf expression for the 
partition function of such a genenlized Gaussian structure in the presence of random external 
fields and for its scattering function So. We show th3t So of a randomly crosslinked Gaussian 
network (RCGN) is a self-averaging quantity and depends only on crosslink concentration M I N .  
where M and N are the total numbers of crosslinks and monomers. From our derivation we find 
that the radius of gyration RE of a RCCN is of the universal form R: = (0.26 * O.OI)O~N/M,  
with n being the Kuhn length. To mal the excluded volume effect in a systematic, perrurbative 
manner. we expand the DeamEdwards partition function in terms of density fluctuations 
analogous to the theory of linear polymers. For a highly crosslinked interacting network we 
derive an expression far the fiee energy of the system in terms of.& which has the same role 
in our model as the Debye function for linear polymers. Our ideas are easily generalized to 
crosslinked polymer blends which are maled within a modified version of Leibler's mean-field 
theory for block copolymers. 

1. Introduction 

Randomly crosslinked macromolecules present a challenging field from a physical as well 
as from a mathematical point of view with many practical applications in polymer sciences. 
For this it is very unfortunate that the statistical mechanics of polymer networks is still 
poorly understood. Although there has been a great deal of theoretical interest in this topic 
over the last few years [ N I ,  we feel that a satisfying answer of how to deal with polymer 
networks from a microscopic point of view is siill missing. One of the reasons is that most 
of the recent work on the subject [4,5] is based on replica field theory originally introduced 
into polymer science by Edwards er al [l-31 in which, however, much of the underlying 
physics remains hidden in the complicated mathematics of the replica formalism [9]. 

It is the purpose of this paper to present an alternative approach to the statistical 
mechanics of randomly crosslinked macromolecules that goes beyond the earlier~phantom 
type models (for details see, for example, [IO]), but ,at the same time avoids the well known 
difficulties associated with the replica trick [9]. Our theory is based on the minimal network 
model by Deam and Edwards [l-71; however, it avoids replica field theory completely. The 
strategy in this paper is outlined below. As a generalization of the Wiener measure in the 
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theory of linear polymers [ 111 we introduce the concept of a randomly crosslinked Gaussian 
network (RCGN) in section 2. As we will show in section 3, the non-interacting problem 
can be solved exactly, even for random crosslinking junctions. In section 3 we develop our 
general formalism and derive an exact formula for the partition function of a generalized 
Gaussian structure in the presence of random external fields. This equation (20) is the 
central mathematical result of the paper, for it is also a generating function from which 
further results are obtained. In section 4 we consider some applications. In particular, we 
calculate the static smcture function SO for RCGNs without excluded volume interaction. 
The important finding here is that SO is a self-averaging quantity, i.e. it does not depend 
on the topological details of the model. The consequence is that for RCGNS SO is a quasi- 
universal function that has a similar role for polymer networks as the Debye function for 
linear polymers. The interacting case is treated in section 5. To take into account excluded 
volume interaction, we transform our original network Hamiltonian to collective density 
variables. Here we work in close analogy with the excluded volume problem for dense 
polymer melts [ll]. For highly crosslinked systems it is sufficient to consider only lowest 
order density fluctuations, although higher order terms are readily calculated within our 
formalism. In this case it is easy to show that the free energy F can be expressed in 
terms of the scattering function SO of the non-interacting system and the excluded volume 
parameter. It is crucial to realize that F depends on the frozen degrees of freedom (random 
crosslinking junctions) only via SO, and no further quenched averaging remains to be done. 
To treat crosslinked polymer blends we apply a modified version of Leibler's theory for 
microphase separation in block copolymers [I21 and show how to obtain similar criteria for 
phase instability in multi-component networks. Generalizations and outlook are given in 
section 6. However, more detailed calculations of the latter applications will be presented 
in a forthcoming publication. 

M P Solfand T A  Vilgis 

2. Formulation of the model 

We consider flexible interacting macromolecules on the level of the Edwards Hamiltonian 
[l]. For a single polymer chain in d spatial dimensions the Edwards Hamiltonian consists 
of two parts H = HW + HI,  where 

is the Wiener measure that models the connectedness of the chain as a Gaussian. Self- 
avoidance between monomers is described by a pseudopotential of the form 

where 6(R) is the Dirac delta function. In equations (1) and (2) we have adopted the 
following notation: U > 0 is the second virial coefficient [I 11 that characterizes the repulsive 
excluded volume interaction between monomers, N is the degree of polymerization, a the 
Kuhn length, and~Ri  (i = 0,. . . , N )  are monomer coordinates; ,5 = ( ~ B T ) - '  as usual. For 
convenience we restrict the following discussion to networks that are modelled from one 
single but huge polymer chain of macroscopic dimension (figure. 1). It was shown that this 
simplification gives the correct physics for highly crosslinked polymer networks above the 
percolation threshold [l]. A generalization of our method to multi-polymer networks will 
be discussed later on in section 6. 
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Figure 1. A single-chain network 
Only the beads at the crosslink sites are 
shown. For high crosslink concenua- 
tions far above the percolation thresh- 
old a single-chain network is practically 
indistinguishable f” a nelwork that is, 
modelied from many polymer chains. 

To describe M permanently crosslinked monomers, we specify each junction by a pair 
of randomly chosen ‘crosslink coordinates’ i,, j ,  (0 < i,, j ,  4 N, e = 1, . . . ,~M), such that 
monomer Ri, is connected to monomer Rjc (figure 1). The whole set of junction points 
C =~{ie, je},”=, represents the random connectivity of the network. Within the framework 
of the Deam-Edwards model [l] the partition function of a Gaussian phantom network with 
excluded volume is given by 

where the toial phase space is now restricted by the additional crosslinking constraints. 
Equation (3) describes a phantom network in a sense that the polymer chain is free to pass 
through itself irrespective of entanglements. Chain motion is only restricted by the presence 
of permanent crosslinks and the excluded volume interaction. 

In the replica formalism the next step is to perform a quenched average over the 
logarithm of Z(C) with a suitable distribution for the ‘frozen’ crosslink coordinates 
{ie, j&. Using the replica trick [9] this leads to a non-trivial modification of the 
interaction term HI in which all replicas become coupled [l-51. Applying standard 
techniques for setting up field theories in polymer physics, we were able to map equation (3) 
into a dn-dimensional O(m) field theory in the limit n,  m + 0 [7]. Unfortunately, in the 
replica formalism further progress relies highly upon crude approximations or variational 
assumptions ~[ 1-71, 

Contrary to the replica method we do not carry out the quenched average at this stage 
of the calculation. Instead we model the-delta function in (3) by a Gaussian distribution 
with width E in the limit E + 0. Therefore we are keeping all random crosslink coordinates 
explicitly in the partition function. Formally this means that if the Wiener measure ,5Hw is 
replaced by the more general expression for a RCGN . .  

we can eliminate the delta constraint in (3). With equations (2) and (4) we are now in a 
position to introduce our RCGN Hamiltonian as follows: 

(5) H = Hc t HI. 
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To enforce. the crosslinking constraints we finally have to perform the limit E -+ 0. It is 
mathematically convenient to normalize the Gaussian measure defined by (4) with respect to 
the non-interacting system which will serve us as a reference state. In this case the partition 
function in (3) can be cast into the more convenient form 

M P Solfand T A  Klgis 

Z(C) = (e-BH1)o = exp(-p(F - Fo)) (6) 

where the average (. . .)o stands for 

For U = 0 the free energy F of the interacting network reduces to that of a non-interacting 
RCGN denoted by Fo. The partition function (6) is completely equivalent to the one used by 
Edwards et a1 [I-31. It is also identical to the one used in more recent works by Goldbart 
and coworkers [4,5], except for the fact that in this paper we are dealing with a single-chain 
network exclusively. This is primarily a matter of convenience which has been discussed in 
greater detail in [l-31. The Hamiltonian (5) is, of course, easily generalized to multi-chain 
or multi-component networks. 

To make further analytic progress, it will become useful to decouple the interaction 
term HI by rewriting (2) in terms of collective density variables @k = XED exp(ikRi) and 
applying the HubbardStratonovich transformation to (6). Since this is standard procedure 
[4, 111, we quote here only the final result 

By IC > 0 we mean the positive half of k space, i.e. ks > 0, and V is the volume. The 
partition function (8) in combination with the measure defined by (7) is equivalent to the 
minimal network model of Deam and Edwards [l] and will be our starting point for further 
investigations. 

3. General formalism 

Before dealing with the more complicated excluded volume situation directly, it is easier 
to develop the mathematical formalism for non-interacting RCGNa at first. To evaluate 
equation (8) in a systematic fashion, it is standbd to expand the first exponential in the 
entropic, second part of (8) in terms of density fluctuations O-k or the excluded volume 
parameter. In any case the main mathematical task is to calculate averages which are 
of the general form (exp(ib'R))o, where we have introduced (d x ( N  + 1))-dimensional 
'supervectors' R = (&,RI , .  . . , RN)' and b = (bo, 81,. . . , bs)'. For the moment we 
assume that b is completely arbitrary, but does not depend on R explicitly. By b;Ri we 
will always mean a d-dimensional inner vector product, and t denotes the transposed vector. 
Since (. . .)o involves a Gaussian integration with the measure defined by (7), it is essential 
to find the inverse matrix of the quadratic form, equation (4), first. For this it is most 
convenient to switch to matrix notation. 

Using matrix notation in which R is the above defined 'supervector', the quadratic form 
in (4) can be written as follows: 
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1 -1 0 ... 0 

W =  (10) 
0 ... . - I  2 -1 
0 . . . ~  0 -1 .~ 

denotes the connectivity matrix associated with Hw, and 

0 0 0  0 0  

IC&, j,) = 0 . . . 0 . . . 0 

0 0  0 0  

represents a single crosslinking junction at random position (ie, j e ) .  Equation (9) is easily 
verified by inspection. 

For the following it is essential to note that the quadratic form, equation (9), is only 
sem'positive definite, hence no matrix inverse exists. The non-negativity of HG follows 
immediately from (4), since it is a sum of squares. However, there is one zero eigenvalue 
associated with eigenvector R = (1, . . . , 1)'. This is easily seen from noting that the 
column sum of the matrix in  (9) is always zero irrespective of the value of z. Before we 
proceed, we need to transform (9) to a positive-definite quadratic form by removing the 
mode which belongs to eigenvalue zero. This mode corresponds to a displacement of the 
centre of mass, and since we are dealing with a simply-connected structure, there can be 
only one such mode. The desired transformation is easily accomplished by switching to 
internal coordinates r; = Ri - Rt-1, or in matrix notation R = Di, where 

For the multi-chain network we refer to our discussion in section 6. With the above 
manipulations the measure corresponding to (9) takes on the simple form 

where r = (TI,. . . , TN)', and we performed an integration over a. In the limit E + 0 
equation (13) yields the partition function of a RCGN without excluded volume. The N 
dimensional matrix M in (13) is given by 

M(z)  = zz + PP' (14) 

where Z denotes an N-dimensional unit matrix. %e outer matrix  product^ PPt is formed 
with the N x M ‘crosslink matrix' P = (PI, . . . , py), where each column vector is defined 
by 

p.=(O ,..., O , I , l ,  ..., l , I , O  , . . _ )  0)' e = , l ,  ..., M. (15) - 
i, t I to j e .  
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The 1's in (15) run from the (i. + 1)th to the j,th position; the rest of the components are 0. 
For convenience we will assume that j ,  is always larger than i,. Equation (14) is derived 
in appendix A. 

The crosslink matrix P is defined in such a way that it contains complete information 
about the crosslink positions in an unique way. By construction it is exactly this extra term 
in M that distinguishes the network problem from a linear polymer. For the following 
derivation it is crucial to have the crosslinking constraint in (14) in form of an outer matrix 
product of P. Note that M is positive definite, and thus its inverse exists. 

Using equations (13) and (14) the measure in (7) can be redefined in terms of M 

M P So[fand T A  Klgis 

(. . .)o = L'O lim - ZO(C) 1 /Ra / f id r i  ex(-& T'M T) . . . . 

In the remainder of this section we will show that this average exists for E + 0 and derive 
an exact expression. 

With equation (16) we are in a position to calculate expectation values of the form 
(exp(ib'R))o. Since r depends only linearly on R ,  it is sufficient to consider expressions 
of the form 

(exp(ic'r))o = lime'p 
*-to 

where c is again some arbitrary vector which does not depend explicitly on R. We can 
always go back to the original monomer coordinates since i: = 'D-'R. The key problem 
here is to find the inverse of M(z)  in the limit z = @/a)' + 0 which depends on all 
the crosslink coordinates (ie, j&. This is accomplished by invoking an identity d w t o  
Frobenius, Schur and Woodbury [13, 141. An alternative but shorter proof of the theorem 
is given in appendix B. The important finding is that 

1 
(18) M-'(z) = -(Z -P(PrP)-*Pr). 

Z 

Making use of the fact that P+ = (Pr'P)-lPr is a pseudoinverse of P, i.e. PtP = Z, it 
is trivial to show that PP+ is a projector for P. It is also possible to prove the following 
alternative representations [15] 

M 
p p +  = XX' = x.x:. 

e= I 

Here X = (XI,. .. , ZM) is any orthonormal vector basis re, e = 1,. . ., M for the M- 
dimensional vector space spanned by the p,'s in (15). Combining equations (17)-(19) our 
central result of this section can now be summarized by the following formulae: 

(exp(itT))o = exp 

It is remarkable that equation (20) is of a very simple and special form although the crosslink 
coordinates C = [ie,  je],"=, are completely random. Z - XX' is orthogonal to P and 
idempotent which can be seen by inspection. As a consequence the only eigenvalues of 
Z - X X f  are 0 and 1 with degeneracies M and N - M, and the quadratic form in (20) 
is semipositive definite. This 'ensures"'that the exponent in (2.0) is never positive. The 
non-triviality of the network problem enters the calculation in the form of X which can 
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be found either by orthonormalizing the p,'s in (15) or directly from (IS). The former 
is usually accomplished by Gram-Schmidt orthonormalization [13] or numerically by the 
singular value decomposition [16]. Note that equation (18) only requires inversion of an 
M x M matrix, whereas M-' is N-dimensional with N >> M for a real network. 

It is worthwhile mentioning that equation (20) is also the partition function of a Gaussian 
structure (random or not depending on the choice of crosslinks {i,, j e } z , )  in the presence 
of random external fields bl, . . . , bN. This is easily seen by making the transformation 
in (20) c = Zrb back to the original monomer coordinates Ri. In the following section we 
consider more applications of equation (20) with emphasis on RCGNs. 

4. Non-interacting random networks 

The reference quantity in the theory of linear polymers and polymer melts 111, 121 is the 
static structure function of a single non-interacting polymer chain. For a RCGN it is given 
by 

The structure function can be measured directly in polymer solutions .under @-conditions 
via neutron scattering. Physically it is the Fourier transform of the pair correlation function. 

From equation (20) it is easy to derive an exact expression for SO@, C) by setting 

c =  k(0 ,  ... ,o, 1.1,. . . , 1,1,0, .  . . ,O)' - 
i + l t o j  

From equations (20x22) we find 

The M-dimensional vectors yj (i = 0, . . . , N )  are given in terms of the orthonormal basis 
X in (19) 

(VI 3 . . . *  YN) = (DX)' (24) 
where D is the lower triangular matrix defined in (12), and yo = 0. Each yi is a vector 
whose components depend on the whole set of crosslink coordinates C via X. Equation (23) 
is of a similar structure to the result in [17] for a RCGN under external stress obtained by 
completely different means. Derivations of structure factors that are based on the affine 
deformation hypothesis [lo] can be found in [17, 181 but will not be dealt with in this 

Although our primary interest here are RCGNs, we can apply equation (23) to problems 
with non-random connectivities as well. As a simple example which can be solved 
analytically and to illustrate our formalism, we consider a flexible ring polymer as a 
trivial example of a non-random network with only one crosslink. For a closed loop the 
crosslink connects monomer & with RN, and the crosslink matrix P is of the simple form 
P = p ,  = (1.1, ..., 1)'. Thus X ~ =  21 = l / f i ( l .  1,.  .., 1)' and with the definition in 
(24), yi = i/&? for i = 0, . . . , N .  From equation (23) we get the exact result 

work. 

N ( k a I i - j I (  2 2 .  I i i j I ) )  
So(k, Ring) = exp - 2d 1-- , 

i.j=O 
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There are more cases in which X can be obtained analytically. Among these are star or 
branched polymers and networks or manifolds with regular, non-random connectivity. More 
details of these applications will be given elsewhere. Since equation (23) is exact, it also 
reduces for M = 0 to the well known Debye function for linear polymers [ll]. 

We now specify our discussion to networks with quenched random connectivity. For 
an arbitrary set of crosslinks we are not able to derive analytic expressions for yi in (23). 
Moreover, within the framework of replica theory macroscopic physical observables like So 
are to be averaged over the 'frozen' variables, here all possible sets of crosslink coordinates 
C. To make further progress it is therefore absolutely crucial to understand that in the 
thermodynamic limit when N and M are sufficiently large any specific but random crosslink 
configuration C would produce the same result for SO if, for example, equation (23) could be 
evaluated analytically. In the literature this is well known as self-averaging. In fact for any 
self-averaging quantity like the free energy, smcture factor or radius of gyration (these are 
the quantities we are mainly interested in) performing the quenched average at the end of 
the calculation is not an absolute necessity. To obtain SO for RCGNs it is therefore sufficient 
to pick one specific set of random numbers 0 < i,, j e  6 N ,  e = 1,  . . . , M, from a suitable 
distribution function and evaluate (23) for this specific but random connectivity. With the 
results from section 3 it is indeed very easy to obtain yj ana carry out the summation in (23) 
numerically (figure 2). To create a specific set of crosslink coordinates C = {i,, jc},"=, we 
have chosen an uniform distribution P(C) = ( 1 / N ) 2 M  for simplicity [4]. Physically this 
means that the frozen crosslinks can, in principle, be anywhere along the chain without 
restrictions. 

Self-averaging is demonstrated in figure 2 for two random networks with different 
crosslink configurations C and also different network sizes N and M .  We find that self- 

M P Sovand T A  Mlgis 

Figure 2. Scanering function 'So(g. C) for two different RCGNS derived from (23). q2 = 
k202pd; c = M / N  full curve N = 10000, c = 0. 1. 2. 3, 4. 5% (left to right): open 
circles N = 5000 (only shown for c = 2. 4%). C = [&, j<J:, were picked from the interval 
[O, NI at random. The orthonormalization of P was performed with a standard singular value 
decomposition algoriIbm [16]. Due to self-averaging curves with same crosslink concenrration 
(here c = 2, 4%) are identical. For c -, 0 we recover the Debye function for linea polymers. 
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averaging is almost perfectly fulfilled even for relatively small networks with N 2 5000 
and crosslink densities of a few percent. Small deviations between the two networks in 
figure 2 are due to finitesize effects. The structure function depicted in figure 2 is a 
universal function in a sense that any other RCGN with N 2 5000 led to identical curves. 
As one would have expected So does only depend on the number of crosslinks M and 
monomers N and nor on microscopic .details of crosslink positions. In fact, our exact 
calculation shows that for RCCNa, So(k, C = ( i<,  je)g,) = &(k, c) and that it depends only 
on crosslink concentration c = M / N .  The important consequence is that for RCGNs the 
structure function So(k, c) can be viewed as the equivalent to the Debye function in the 
theory of linear polymers. By construction it is this complete analogy between the theory of 
linear polymers and our model that will allow us to approach the excluded volume problem 
in the next section very similarly to linear polymers. 

As a by-product of equation (23) we obtain an exact expression for the radius of gyration 
Rg of a RCGN. It is easy to show [ll] that in the limit k + 0, So(k, c ) / N 2  = 1 - k2Ri/d,  
and from our numerical calculation we find that Ri = 0.26aZ/c, where c = M / N .  The 
latter result is also universal in a sense that the prefactor 0.26 & 0.01 % I/f was found 
for all networks with functionality f = 4 which were modelled from a uniform crosslink 
distribution. Small fluctuations were mainly due to the finite  size^ of the networks under 
investigation. Similar results have been suggested throughout the literature. However, these 
calculations had to rely upon various approximation schemes. For very large k values of 
the order l /a ,  &(k, c) decays as I /kz  as expected for a non-interacting system. In the 
intermediate k range no simple power-law decay could be found. From the semipositive 
definiteness of (20) and (23) it follows that the scattering function of any simply connected 
Gaussian structure is a monotonically decreasing function in kz with a maximum at 
k: = 0. So far further analytic progress in (23) depends on simplifying assumptions or 
approximations about the form of y;'s in (24). 

As another illustration of (20) we consider a generalized Gaussian structure in a 
homogeneous electric field E when each monomer is randomly charged with q; = &q. 
In this case the electric energy is given by -xi qiERj, and we can directly get the 
partition function from (20). Performing the quenched average over qj which is analytically 
possible the free energy becomes F ( E )  = F ( 0 )  - (aZq2E2/2dk~T)TrY, where Tr 
means, trace, and y = D(T - XX')D' .  Applying the definition in (24) we find that 
T r y  = N ( N  - 1)/2 - xzl y,? and from a numerical calculation T r y  % 0.5N/c. 

5. Random networks with excluded volume 

5.1. Free energy 

We want to outline how the free energy of a RCCN with excluded volume interaction can 
be obtained without resorting to replica methods. For the above considered network the 
partition function (8) is now expanded in terms of density fluctuations 0 - k  up to second 
order. This approximation is known to be valid in dense systems when fluctuations about 
the mean density are small [ l l ] .  In the Gaussian approximation I l l ]  it is straightforward 
to obtain the free energy density F ( u .  c) of the interacting system in terms of &(A, c) of 
the non-interacting system 
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where p = N / V  is the mean physical density. Note that no further averaging over the 
frozen crosslink positions is needed, since &(k, c)  in (23) was already shown to be self- 
averaging. For further reference we also quote the result of the mean-field free energy in 
terms of mean density fluctuations (@k). Up to an irrelevant constant it has been shown [ I l l  
that 

M P Solf and T A  Vilgis 

F ( U ,  C) = -kBT 2 1 s - ( Z d  S-'(k, C)(@k)(@-k) (27) 

where S-'(k, c) = (U/!') + S;'(k, c )  is the inverse structure function of the interacting 
system in Gaussian approximation. Higher order terms in the above Landau-type expansion 
are readily calculated from equation (20) by modifying c in (22) accordingly, but will be 
neglected in the following discussion. 

5.2. Crosslinked polymer blends 

Interpenetrating polymer networks (IPNS), semi-1PNs and crosslinked polymer blends have 
broad range of applications in polymer research and material sciences [19, 201. There has 
been some effort to model these systems using a proptigator originally proposed by de 
Gennes [21] which led to physically reasonable results and agreed widely with experiment 
[6]. However, these were semi-phenomenological models and a microscopic theory for 
multi-component networks is, to the best of our knowledge, still lacking. 

We consider the case of a highly crosslinked two-component polymer blend. For 
sufficiently strong incompatibility between s the network components we expect phase 
separation on a mesoscopic length scale in which A rich and B rich microdomains are 
formed. To model such a situation we start from a long A-B diblock copolymer with the 
following structure: 

A monomer if 0 < i c g N  
B monomer if g N  < i 6 N .  

Ri = 

Here 6 and 1 - g are the volume fractions of the A and B components. Crosslinks between 
monomers are introduced in the same fashion as in (4). The additional crosslink between 
the A and B chain has, of course, no severe consequences. The interaction is described by 
a proper generalization of HI in (2) 

(29) 

Here we closely follow Leibler's derivation [I21 for diblock copolymer melts. Using the 
more general expression (29) in the Hamiltonian (9, the free energy is calculated in terms 
of one-component density fluctuations 42 = c?$--' exp(ikRj) up to second order. From 
this standard calculation 1221 a free energy functional of the same form as (27) is obtained 
with a modified expression for the structure function S 1121. For an incompressible system 
of symmetric copolymers (uAA = U B B  = U and UAB = U + Au) S is given in terms of 
crosscorrelation functions of single component density fluctuations Si'(k, c) = ( Q ~ C D ~ ~ ) ~  
(x, y = A, B) and the Flory parameter ,y.~ = p A u  1121 
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Figure 3. Swcture function (30) of a symmetric crosslinked polymer blend for three different 
values of the Flory parameter X F  = 0. 2c. 4c (upwards) with c = M/N = 0.02 (M = 200, 
N = 10000) and @ = 0.5. We find that a maximum of S murs at finite wavevector qo = 0.23 
(q2 .= k2a2/2d). For the above values of @ and c the disordered phase becomes unstable for 
x p  > & = 4.3c. 

With the method described in section 4 it is straightforward to calculate Si'(k, c )  by a proper 
generalization of (23) for arbitrary volume fraction 0 6 q5 6 1. In the disordered phase it is 
sufficient to consider quadratic terms of the order parameter (4;) in the Landau free energy, 
equation (27). A complete understanding of microphase separation would require the study 
of the homogeneous phase as well as the 'ordered' mesophase. As a precursor for phase 
instability we analyse the behaviour of the structure function S, i.e. the correlation function 
of the local order parameter, at its maximum. From equation (30) it is clear that the position 
of the maximum can only depend on the magnitude of k and is independent of XF. From 
our calculation we find a maximum of S at finite wavevector (figure 3). Divergency of 
the structure function in (30) (i.e. S-' + 0) at its peak value IC0 indicates instability of 
the disordered phase and serves as definition for critical xc (figure 3). More calculational 
details will be presented elsewhere. For a lucid discussion of the above method, see [12]. 

6. Outlook and conclusion 

There are many directions to extend this work and open problems in connection with 
macromolecular networks. Here we mention some of them mainly for completeness.. 

In this paper we have considered networks that were modelled from a single chain of 
macroscopic size. While this simplification is physically reasonable for highly crosslinked 
polymers [l-31, it completely fails to describe ,the correct physics of dilute systems. The 
problem of weakly crosslinked polymers is of special relevance in connection with the 
vulcanization transition, i.e. the transition from a liquid to an amorphous solid state. 
Upon increasing crosslink concentration the gel-fraction of the network grows until at the 
percolation threshold an infinitely large network cluster is formed. In this case it was shown 
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that a finite fraction of polymers spontaneously localizes [SI with respect to some reference 
frame (e.g., the centre of mass of the gel) and therefore can support applied stress. Although 
we are not dealing here with the vulcanization problem (all monomers are apriori localized 
via the harmonic potentials, equation (4)), it is instructive to see how the same issue arises 
in our formulation. 

In a dilute network consisting of many unconnected or partially connected polymer 
chains, each network cluster has its own centre of mass mode. In this case it is no longer 
possible to integrate over each centre of mass coordinate separately as was done at the 
start of section 3. The simplifying feature there was, of course, .simply connectedness 
of the object. Since any further progress required the matrix in (14) to be positive 
definite, a randomly crosslinked dilute network consisting of many chains poses additional 
mathematical problems. It is easy to see that for multiple chains, equation (AI) has to be 
replaced by the more general expression for a polymer melt 

0 0 ..’ 0 
n 1 ... o 

\ o  0 I“  1 )  
Here Zn is the n-dimensional unit matrix, n the number of polymer chains, and E2 denotes 
a direct product. Equation (31) has a simple physical interpretation. The 1’s represent the 
backbone of the chain and by removing one element from the diagonal, the chain is cut into 
two pieces, and so forth. It is interesting to note that even for this more general situation, 
it is still possible to ‘invert’ M analytically, although it is no longer positive definite. This 
was proven in 1141 by making use of the concept of pseudoinverse matrices which leads 
to a similar result as (18). However, the mathematics is more involved and will not be 
presented in this paper. In the framework of replica field theory the vulcanization problem 
was treated in [5] by invoking a variational ansatz for the localization length of monomers. 

Finally, we want to make a short comment about the role of entanglements in polymeric 
networks. Up to now the systems considered were phantoms in the sense  that^ the only 
topological restrictions on chain motion were permanent crosslinking junctions modelled 
by (4). In any realistic vulcanization process upon network formation a certain number of 
entanglements are permanently trapped, which can be viewed as another form of frozen 
constraint leading to reduction of entropy. However, up to now there are no topological 
invariants known to mathematicians that describe this phenomenon in a unique and rigorous 
fashion. A simplified version of the entanglement problem was proposed by Edwards and 
coworkers who have modelled entanglements in form of sliplinks [3, 231, i.e. crosslinks with 
the additional freedom to slide along the chain. Formally sliplinks are introduced by treating 
the crosslink coordinates as ‘hot’ variables. To see how equation (3) gets modified in the 
presence of sliplinks, we consider the simplest possible scenario in which all crosslinks 
in (3) are assumed to be sliplinks. To model a more realistic situation we had to consider 
both, crosslinks and sliplinks. Summing (3) over all i,, j ,  independently modifies the 
former crosslink term to ( 6 (Ri - Rj)) . By invoking the well known identity 
x M  = (M!/2ni)~dpee”XpL-(Mt’ ) ,  it becomes clear that the sliplink contribution can be 
treated on a similar footing to the excluded volume interaction in (2). A mathematically 
similar but more involved problem arises in the replica formalism, and it has been shown [I] 
that the p-integration is dominated by the steepest descent. Thus in the simple example 
considered the effective excluded volume is reduced by the presence of sliplinks to U - p. 
The above discussion is also valid for independently distributed crosslinks and sliplinks. 
Whereas the crosslinks modify the Wiener measure to (4), sliplinks renormalize the excluded 

M 
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volume parameter. More sophisticated models can be formulated if the degrees of freedom 
of the sliplinks are, in addition, restricted by the permanent crosslink positions [3, 231. 

In summary, we have proposed a microscopic model for RCGNs and its generalization 
to interacting networks and crosslinked polymer blends. As an extension of the Edwards 
Hamiltonian for linear polymers we introduced a similar Hamiltonian for RCGNS taking 
the excluded volume interaction into account. We developed a mathematical formalism 
which can solve the non-interacting RCGN exactly. By employing the idea of self-averaging 
we showed how to approach the excluded volume problem in a systematic, perturbative 
manner. Our method avoids the well known technical difficulties of replica theory like 
replica symmetry breaking or the n + 0 limit. The theory presented provides a new 
perspective on various aspects and open questions of polymer networks with random and 
non-random connectivities that are of general interest. 
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Appendix A. 

To prove equation (14) we have to evaluate DD'(zW + E,"=, ,K(ic,  jc))'D in (9) with mamces 
defined via (10)<12). First note that 

Let ei = (0,. . . ,O, 1,0,. . . ,O)' be the ith unitvector of the canonical basis in N + 1- 
dimensional space. Then 

= ((ei ,  - e j , ) ,  . . . , (ei,w - ej,,,))((eil - e j , ) ,  . . . , (ei, - ejM)Y. (-42) 

From (A2) we obtain equations (14) and (15) by setting p ,  = -Dt(eic - ejc). 

Appendix B. 

We want to find the inverse of the matrix defined in equation (14), 

M ( z )  = z (. + ;Wr) (B3) 

in the limit z + 0. The difficulty with (B3) is that Z cannot be neglected against the l/z 
term, since the crosslink contribution alone is highly singular with degeneracy N - M .  We 
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proceed by writing the inverse of M quite formally in terms of its Neumann series 

M P Soy and T A  Wgis 

With the definition in (15) it is easy to~show that for tetrafunctional crosslinking junctions, 
the crosslink matrix P is of full rank M. It is well known that in this case the normal form 
Pr? is positive definite 1131 and that therefore its inverse exists. Using this information we 
obtain equation (18) from (B4) by letting z + 0. Convergency of the above manipulations 
is proved by multiplying the final result for M-' with A4 in (B3) which gives identity. 
This also verifies the correctness of the result in (B4). 
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